Low-Pass Filtering Method for Poisson Data Time Series
نویسندگان
چکیده
منابع مشابه
Modelling of nonlinear filtering Poisson time series
In this article, algorithms of non-linear filtering of Poisson time series are tested using statistical modelling. The objective is to find a representation of a time series as a wavelet series with a small number of non-linear coefficients, which allows distinguishing statistically significant details. There are well-known efficient algorithms of non-linear wavelet filtering for the case when ...
متن کاملEfficient Method for Space-Variant Low-Pass Filtering
We propose a method for efficiently performing space-variant (SV) filtering, which we apply here to the low-pass case. It is based on using a small set of N a priori fixed reference kernels, which are obtained by applying different spatial scaling factors to a mother smoothing filter. The set of 2-D signals obtained by filtering the input image with these kernels is linearly combined to achieve...
متن کاملa new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولDistribution Based Data Filtering for Financial Time Series Forecasting
Changes in the distribution of financial time series, particularly stock market prices, can happen at a very high frequency. Such changes make the prediction of future behavior very challenging. Application of traditional regression algorithms in this scenario is based on the assumption that all data samples are equally important for model building. Our work examines the use of an alternative d...
متن کاملMissing data imputation in multivariable time series data
Multivariate time series data are found in a variety of fields such as bioinformatics, biology, genetics, astronomy, geography and finance. Many time series datasets contain missing data. Multivariate time series missing data imputation is a challenging topic and needs to be carefully considered before learning or predicting time series. Frequent researches have been done on the use of diffe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Sciences
سال: 2021
ISSN: 2076-3417
DOI: 10.3390/app11104524